Spinal excitability is increased in the torque-depressed isometric steady state following active muscle shortening

نویسندگان

  • Caleb T Sypkes
  • Benjamin Kozlowski
  • Jordan Grant
  • Leah R Bent
  • Chris J McNeil
  • Geoffrey A Power
چکیده

Torque depression (TD) is the reduction in steady-state isometric torque following active muscle shortening when compared with a purely isometric contraction at the same muscle length and level of activation. The purpose of the present study was to assess spinal and supraspinal excitability in the TD state during submaximal contractions of the dorsiflexors. Eleven young (24 ± 2 yrs) males performed 16 contractions at a constant level of electromyographic activity (40% of maximum). Half of the contractions were purely isometric (8 s at an ankle angle of 100°), whereas the other half induced TD (2 s isometric at 140°, a 1 s shortening phase at 40° s-1 and 5 s at 100°). Motor evoked potentials (MEPs), cervicomedullary motor evoked potentials (CMEPs) and compound muscle action potentials (M-waves) were recorded from tibialis anterior during the TD steady-state and purely isometric contractions. When compared with values in the purely isometric condition, following active shortening, there was a 13% decrease in torque (p < 0.05), with a 10% increase in normalized CMEP amplitude (CMEP/Mmax) (p < 0.05) and no change in normalized MEP amplitude (MEP/CMEP) in the TD state (p > 0.05). These findings indicate that during voluntary contractions in the TD state, the history-dependent properties of muscle can increase spinal excitability and influence voluntary control of submaximal torque production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torque depression following active shortening is associated with a modulation of cortical and spinal excitation: a history‐dependent study

The reduction in steady-state isometric torque following a shortening muscle action when compared to a purely isometric contraction at the same muscle length and level of activation is termed torque depression (TD). The purpose of this study was to investigate spinal and supraspinal neural responses during the TD state of a maximal voluntary activation of the ankle dorsiflexors. Thirteen subjec...

متن کامل

Energy cost of isometric force production after active shortening in skinned muscle fibres.

The steady-state isometric force after active shortening of a skeletal muscle is lower than the purely isometric force at the corresponding length. This property of skeletal muscle is known as force depression. The purpose of this study was to investigate whether the energy cost of force production at the steady state after active shortening was reduced compared with the energy cost of force pr...

متن کامل

Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury.

This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) va...

متن کامل

Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres

We examined the tension change induced by a rapid temperature jump (T-jump) in shortening and lengthening active muscle fibres. Experiments were done on segments of permeabilized single fibres (length (L0) approximately 2 mm, sarcomere length 2.5 microm) from rabbit psoas muscle; [MgATP] was 4.6 mm, pH 7.1, ionic strength 200 mm and temperature approximately 9 degrees C. A fibre was maximally C...

متن کامل

Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.

The depression of isometric force after active shortening is a well-accepted characteristic of skeletal muscle, yet its mechanisms remain unknown. Although traditionally analyzed at steady state, transient phenomena caused, at least in part, by cross-bridge kinetics may provide novel insight into the mechanisms associated with force depression (FD). To identify the transient aspects of FD and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017